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         Abstract. The drug is a substance that when introduced into the body brings 

physiological effects in the body. Drug discovery is the process comprising many stages of 

creating such substances to bring physiological effects for particular target diseases. 

Techniques like machine learning (ML) and deep learning (DL) have been successful in 

streamlining this difficult, expensive, and time-consuming drug discovery process. Due to the 

availability of abundant and quality data, ML and DL methods have been implemented at the 

different phases of drug discovery that include; target identification, target validation, drug-

target interaction, lead optimization, etc., and have reduced manifolds the overall time drug 

introduction in the market. The de-novo method creates fresh chemical structures out of basic 

building blocks without the use of past knowledge or connections. By employing 

computational growth techniques, de-novo describes the creation of unique chemical 

structures that adhere to a group of restrictions. De-novo drug design has a number of benefits, 

such as the ability to search a larger chemical space, the creation of molecules with unique 

desirable features, and the quick and economical production of therapeutic candidates. 

  

Keywords:  De novo, Physiological, Machine Learning, Deep Learning, Cancer, Drug       

Discovery. 

1. Introduction 

 

       The drug is a substance that when introduced into the body brings physiological effects in 

the body and drug discovery is a pipelined process for identifying such elements. It is a 

profoundly complex, costly, cumbersome, and multi-factor dependence task. On average, a 

new drug molecule costs around $2.6 billion for identification and development [1]. The main 

aim of a drug, usually a protein, is to get attached to the target protein in the body whose 

modification can bring a change in the target disease. Despite taking an enormous time and 

money the success rate of discovering a new drug is modicum, not satisfactory. The overall 

pipeline has largely been unfruitful. On the other hand, living beings (humans, more 

specifically) are continuously fighting diseases, which makes discovering new drugs a vital 

task for the survival of humans and has compelled scientists to go for the optimization of this 

drug discovery. In this vast field, which has been mostly considered as barren as far as the 

process's efforts (time, cost and output) are concerned, traces of fertility are seen after the 
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application of data-driven methods like ML and DL. The trend of the articles published in drug 

discovery using ML and DL approaches is shown in Fig. 1. 

 

 

Fig 1. Papers published over the years 

 

2. ML Approaches in drug discovery 

 

      Great benefits are witnessed by pharmaceutical companies through the implementation of 

ML techniques in development of new drugs. A large number of ML-based models were 

developed for predicting the features which may be, chemical, biological, or physical, of 

various compounds that aid in drug discovery [5–13]. All stages of drug discovery incorporate 

ML models. These techniques have been extensively used for drug repurposing, to analyze 

and successfully predict drug-protein interactions and discover and establish drug efficacy etc 

[14–18]. 

 

Fig 2. AI and drug discovery phases. 
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Various ML techniques used in drug discovery include Random Forest, Naïve Bayes, SVM, 

etc. as shown in Fig 2. 

        Random Forest is a reworking of decision trees [19]. It is a set of different classifiers 

returning the mode of the outputs of each decision tree (flow-chart type classification 

algorithm [20]). Random forest prevents over-fitting by reducing estimator variances. 

Random Forest is considered to be one of the revolutionary algorithms in ML. The random 

forest has been used in drug-target interaction prediction, used with lasso [21]. The random 

forest has also been used in response prediction, and improvement in scoring function 

performance in binding affinity [22]. A random forest-based method SMRF (scalable map-

reduced random forest) [23] has been proposed for big data learning. Initialization, generation 

and voting are the three steps of the algorithm’s operation. To explain attributions, the 

initialization process creates a file that acts as a descriptor. The generating step entails 

randomly splitting the original dataset into numerous subgroups and using the bagging 

algorithm and bootstrap samples for building the random forest which is created from the 

training dataset. In the voting step, the decision trees vote on the outcome. 

The question that makes RF significant to drug discovery pertains to some of 

the following reasons: 

 Quicker training process 

 The use of a reduced number of parameters 

 Easy handling of missing data [24] 

 

        Another variation of RFs known as multivariate random forest assists in reducing error. 

The data containing genetic information is used to analyse and extrapolate the mean and 

confidence interval of drug responses, which is a significant quality for studying any medicine 

that will be used in clinical trials [25]. 

        The Bayes' theorem is used to create a probabilistic classifier called Nave Base. NB 

performs so well in machine learning applications because of dependence distribution [26]. 

NB methods can help predict ligand-target interactions, a significant accomplishment that 

could eventually help in drug discovery [27]. Scientists around the world recently combined 

various NB approaches into a variety of drug discovery applications. Researchers employed 

NB models and other methodologies to classify drugs in breast cancer [28]. Complementary 

Nave Bayes [29] is a variation of the NB classifier with no generative interpretation. It 

enhances the performance of Naïve Bayes classification by utilizing the data from all groups but 

the one that is being concentrated. It's also utilized in huge datasets [30]. 

        The SVM model is used to define a collection of hyperplanes in high dimensions, using 

kernel functions like RBF, Linear, poly, etc., this is very often used for classification tasks 

[31]. It is a supervised algorithm which is used in drug-target interaction [32], anticancer drug 

classification [28], quantifying anti-cancer cell properties [33] and many more. 

        Logistic Regression (LR) classifier is used for predicting the likelihood of an event 

occurring. It employs several predictor variables which might be numerical or categorical. It 

extends the logistical function. LR accepts a vector of variables as input. It also includes 

weights associated with each of the input variables. LR has been widely used in many drug 
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discovery applications recently with high performance and cost-effective properties [46]. 

 

3. DL approaches to drug discovery 

 

      Deep Learning based approaches have solved various complex problems easily in the 

recent past. DL-based models have achieved higher performance rates while keeping the 

margin for error very low. Image and object detection etc., can all benefit from the 

deployment of CNNs. RNNs and their successors, such as LSTMs, and GRUs are great 

tools when solving challenges like language translation and voice recognition etc. The field 

of drug discovery can be greatly enhanced by deep learning. DL could be seen as a rapid and 

cost-effective way of drug discovery, which is a cumbersome and computationally expensive 

procedure. DL has been used in drug discovery for three main purposes. 

 Drug properties prediction 

 De Novo Drug Design 

 Drug target interaction 

 

Various deep learning techniques include DNN, CNN and GAN as shown in Fig 3. 

 

 
Fig 3. DL Approaches to Drug Discovery 

 

        A neural network consists of nodes organized in many layers, where neurons/nodes are 

connected between many layers. The layered structure itself makes it diverse and it has been 

proved that simple 3-layer NN can act as a universal approximator, i.e., it can approximate 

any complex function [47]. The general structure is an input layer, many hidden layers and an 

output layer. Multiple hidden layers make the network deep which is called a Deep neural 

network (DNN) [48]. DNNs have heavily been studied for the drug discovery process, and 

one of the important deep learning-based platforms is DeepChem [49]. A Multilayer 

perceptron is a variation of the typical linear perceptron [50- 51]. 

 

       Deep CNN is yet another type of NN which provides promising results in the drug 

discovery process including feature extraction, DTI, etc. The main power of CNN lies in its 
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convolutional filters followed by pooling layers for spatial reduction of layers. It has been 

already discussed throughout the survey and is considered the most important deep learning 

architecture. 

 

       Generative Adversarial Network (GAN) [52] is another kind of deep latent variable 

model. It is considered as the top influencing algorithm in the generative and prediction 

process. The idea is to develop a NN that will apply more focus on the areas where its 

predictions are weak. Mainly it has two networks; Discriminator and Generator, the former is 

simply a NN classifier which tries to segregate the real and fake data samples, the generator 

creates fake data such that the discriminator should not be able to differentiate between the real 

data samples from fake ones, while discriminator is trained to minimize the loss for classifying 

them. Both are trained in an adversarial setting, i.e., training in a competitive way. After being 

successfully trained, the generator generates samples that are indistinguishable from real ones. 

A generator can be easily used to generate new samples as it samples inputs from a random 

standard distribution. This model architecture is used for designing new drug molecules [25] 

and target interaction prediction [52-54]. 

 

4. Tools and databases for drug discovery 

 

4.1 ML and DL-Based Tools for Drug Discovery 

 

       There has been extensive research on drug discovery using a plethora of machine learning 

and deep learning-based tools using different features and techniques. Table 1 gives a summary 

of tools developed for drug discovery. 

 

 Table 1. ML and DL-based tools for drug discovery. 

 

Tools Details References 

 

 

Deep chem. 

 

MLP model to search 

for an appropriate 

candidate 

 

[34] 

 

DeepTox Predicts 

toxicity of 

drugs 

[35] 

 

DeepNeuralNetQSA Detection of the 

molecular 

activity 

 

[36] 

Organic 

 

Creation of 

molecules having 

[37] 
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a specific 

property 

. 

PotentialNet Predicts 

binding 

affinity 

 

[38] 

Hit Dexter Prediction 

based on the 

response to 

biochemical 

assays 

[39] 

 

DeltaVina Scoring function [40] 

Neural graph 

Fingerprint 

Prediction of 

properties of new 

molecules 

[41] 

AlphaFold Predicts 3D structures 

of proteins 

[42] 

 

Chemputer chemical synthesis [43] 

GoPubMed A search engine [44] 

Textpresso Full-text engine [44] 

BioRAT Full-text search 

engine 

[44] 

ABNER Text analyzer [44] 

PPICurator Mining of protein-

protein interaction  

[44] 

 

4.2 ML and DL-Based Databases for Drug Discovery 

 

      Drug discovery using ML and DL-based tools require different datasets/databases. 

Table 2 gives a summary of datasets used for drug discovery. 

 

Table 2. ML and DL-based databases for drug discovery. 

Datasets Details References 

 

BRENDA Enzyme 

information 

dataset 

[55] 

 

KEGG Genomic 

information 

[55] 

 

PubChem Dataset on 

chemicals and 

[55] 
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biological 

activities 

TTD Dataset on the 

DRM and GE 

etc. 

[55] 

DrugBank Dataset on 

drug data and 

drug-target 

[55] 

SuperTarget Drug-related 

databases 

[55] 

 

TDR targets chemogenomic 

dataset 

on neglected 

tropical 

diseases 

 

[55] 

 

STITCH Chemical-

Protein 

interaction 

datasets 

[55] 

SMD Raw 

microarray 

datasets 

[39] 

 

            Gene 

Expression 

Omnibus 

 

Raw 

microarray 

datasets 

[39] 

caArray Cancer 

microarray 

datasets 

[39] 

CGAP 

database 

Cancer 

microarray 

datasets 

[39] 

Oncomine Cancer 

microarray 

datasets 

[39] 

UniHI Human 

molecular 

interaction 

networks 

[39] 

Pathguide resources and 

molecular 

interactions 

[39] 
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UniProt Protein 

information 

dataset 

[39] 

InterPro Protein domain 

dataset 

[39] 

 

5. DL-based tools for cancer drug discovery 

 

         DL-based methods have been predominantly been used for drug response prediction. 

Deep Neural Network performs way better than any feed-forward neural network since the 

ratio s:m, where s is sample count and m represents measurements per sample, does not prove 

good for feed-forward neural networks. These architectures are also prone to overfitting. But 

new DNN-based models have shown some good results. Many such tools/models used in drug 

discovery are shown in Table 3. 

 

Table 3. Cancer drug discovery tools. 

 

Name Details Reference 

HNMDRP Drug–target interaction 

and PPI 

[57] 

KRL Gene expression [58] 

CDRscan DNN, somatic 

mutations and drug 

compound fingerprints 

[59] 

Dr.VAE Gene expression 

autoencoder (drug 

perturbation) 

[60] 

CancerD

P 

SVM (mutations, 

CNVs, expression 

levels) 

[61]  

BMTMK

L 

Bayesian Multiview, 

multitask model 

[62] 

 

The search count of different tools used in different research articles, Table 4, is shown as 

under: 

 

Table 3. Cancer drug discovery tools. 

Tool Search Count 

Deepchem 64 

Alphafold 1371 

Chemputer 30 
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Deeptox 19 

Potentialnet 15 

Deltavina 06 

Gopubmed 113 

Textpresso 83 

Biorat 16 

Abner 1664 

Ppicurator Carscan 2 

Hnmdrp 13 

Bmtmkl 05 

Cancer Dp 03 

Divae 2 

 

6. The De-Novo Era 

         It takes time, money, and risk to create a chemical entity, test it, assess it, and then give 

it the all-clear to be marketed as a medicine. Only 5 out of 5000 therapeutic concepts are 

expected to get to the human testing stage after undergoing preclinical testing. It's important 

to note that only one medicine reaches the market. Big data and AI together are regarded as 

the fourth industrial revolution, and they have the power to change how scientific research is 

carried out dramatically. AI is transforming the fields of pathology, radiology, and other 

medical specialities. DL technologies are beginning to be applied in the drug development 

process in molecular docking, transcriptomics, reaction mechanism elucidation, and 

molecular energy prediction, among others. Using only the building blocks of atoms, the de-

novo approach generates new chemical structures without reference to prior work or 

relationships. Traditional methods rely on the active binders or active site properties of a 

biological target. Nowadays, drug development uses cutting-edge tools including computer-

aided drug design (CADD) methods. These methods include ligand-based design methods 

like pharmacophore modelling and quantitative structure-activity relationships (QSAR), as 

well as structure-based design methods like molecular docking and dynamics. Along with 

current, rapid, and affordable hardware, the expansion of biological targets' X-ray, NMR, and 

electron microscopy structures has accelerated the development of more precise 

computational approaches. New chemical entities have been discovered more quickly as a 

result. According to the meaning of "de novo," which means "from the beginning," this 

technique enables the production of novel molecular entities without the need for a starting 

template [8].  

 

6.1 De Novo Methodology for Drug Design 

 

      The de novo drug creation strategy to creating novel chemical entities uses just a 

biological target (receptor) or its known active binders (ligands determined to show effective 

binding or inhibitory action against the receptor). It primarily involves modeling the ligand or 

active site of the receptor, synthesizing the molecules (sampling), and evaluating the 

chemicals that are created. Various de-novo techniques are shown in Fig 4. 
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Fig 4. Methodologies Used for De-novo Drug Designing 

7. Deep learning models for de novo drug design 

 

Various DL-based models for de-novo drug design are shown in Fig. 5 

 

 
Fig 5. DL Models for De-novo Drug Designing 

 

7.1 Recurrent Neural Network (RNN) 

 

           The researchers in the study [31] used a long short-term memory (LSTM) model to 

generate new drug-like compounds. The generative RNN model is comprised of two LSTM 

layers, each with a hidden dimension of 256 and dropout regularization. Then, a dense output 

layer with softmax activation was applied. The model was trained on SMILES strings (from 

ChEMBL221) by first converting them to numerical representation by one-hot encoding. 
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After training for 22 epochs, the model was able to generate token-wise compounds with 58% 

validity. However, they folded this model and used it to grow user-defined molecule 

fragments. This formulation increased accuracy, hence generating molecules with better 

validity. 

 

7.2 Variational Auto Encoders (VAE) 

 

       The researchers have shown how to map molecular structures to continuous latent space 

using various autoencoders. They have demonstrated that latent space preserves molecular 

similarity, allowing us to generate new molecules with modified properties. They have 

evaluated proposed models, compared the performance, and found that a variational 

autoencoder with an additional discriminator to force the output of the encoder to follow a 

user-defined (target) distribution is significantly better than a simple VAE.  The model that 

follows Gaussian distribution proved to generate 77.4% valid molecules, while the model with 

uniform distribution generated 78.3% valid variational autoencoder with an additional 

discriminator to force the output of the encoder to follow a user-defined (target) distribution is 

significantly better than a simple VAE.  The model that follows the Gaussian distribution 

proved to generate 77.4% valid molecules, while the model with uniform distribution 

generated 78.3% valid molecules. The results were obtained on the ChEMBL version 22.34 

dataset [32]. 

 

7.3 Adversarial Auto Encoder (AAE) 

 

       Adversarial autoencoders (AAE) are used to formulate novel drug molecules with anti-

cancer properties. The researchers used a 7-layer AAE model. They have introduced a neuron 

responsible for growth inhibition percentage in latent space. The proposed method was tested 

on NCI-60 cell line data2and converted the SMILES to binary 166-bit Molecular ACCess 

System (MACCS) chemical fingerprints. Researchers trained a proposed model on 6525 

compounds and sampled 640 vectors from latent space. After feeding them to a decoder with 

log concentration, they found the generated compounds had anti-cancer properties [33] 

 

7.4 Conditional Variational Auto Encoders (VAE) 

 

       Researchers used a conditional variational autoencoder (CVAE) in this work to generate 

novel drug candidates with the desired properties. The CVAE is essentially an extended 

version of a variational autoencoder in which the encoder and decoder are conditioned to 

specify the target properties of generated compounds. The model was trained on the NCI-60 

dataset with 166-bit MACCS fingerprints and one-hot-encoding of normalized G150 (growth 

inhibition by 50%) as a condition vector. After training, they found that feeding the 

conditional vector and latent vector (sampled) to the decoder of CVAE generates molecules 

                                                      
 

 
 

https://onlinelibrary.wiley.com/doi/10.1002/minf.201700123#minf201700123-bib-0034
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with anti-cancer properties. They also verified the characteristics of the generated molecules 

by comparing them with the drugs approved by the FDA for breast cancer. On computing 

Tanimoto similarity coefficients, they found that the generated molecules have high 

similarity. They show how to use the proposed method for searching for similar molecules 

from public datasets [34]. Other ML and DL-based applications for data sciences include [63-

74]. 

8. Conclusion 

       Machine Learning has tremendously optimized and expedited the process of drug 

discovery. Deep Learning, in particular, can cope with heterogeneous and huge amounts of 

data. Deep Learning requires no human intervention and deals with immensely complex data 

which makes it profoundly useful for applications in drug discovery. Some bottlenecks like 

the non-availability of pharmaceutical data and complex biological associations for 

interpretation etc., limit the applications and the applicability of deep learning techniques in 

drug discovery. In this paper, various ML and DL techniques were discussed that are used for 

drug discovery. Various DL-based tools for cancer drug discovery were also discussed. The 

tools and databases that are available for drug discovery were also discussed. Pertinent to 

mention that DL-based approaches provide promising ways to discover drugs efficiently and 

accurately. 
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